Useful Stata Commands for
Longitudinal Data Analysis

Josef Bruderl
Volker Ludwig

University of Munich

May 2012

Nuts and Bolts |

First some ,Nuts and Bolts" about data preparation with Stata.

Mathematical and Logical Expressions

+ add ~ ['] not < less than InQ natural log
- subtract & and <= less than or equal exp() exponential
/ divide | or > greater than sqrt() square root
* multiply == equal abs() absolute

n power ~= ['=] not equal

RECODE

recode varname 1 3/5=7 //1 and 3 through 5 changed to 7

recode varname 2=1 .=. *=0 //2 changed to 1, all else is 0, . stays .

recode varname (2=1 yes) (nonmiss=0 no) //the same including labels, () needed

recode varname 5/max=max //5 through maximum changed to maximum (. stays .)
recode varname 1/2=1.5 2/3=2.5 //2 is changed to 1.5

recode varlist (2=1)(nonmiss=0) //you need () if recoding a varlist

Creating a Dummy

recode varname (2=1 yes) (nonmiss=0 no), into(dummy) //elegant solution I
generate dummy = varname==2 if varname<. //elegant solution 11
tab varname, gen(dummy) //most simple but boring

Josef Briiderl, Useful Stata Commands, SS 2012

Folie 2

Nuts and Bolts Il

Comments
* ignore the complete line // ignore the rest excluding line break
/* ignore the text in between */ /// ignore the rest including line break
Be careful with missing values: Data in wide-format: counting values in varlists
. ==+, this might produce unwanted
results. For instance, if you want to - egen numbl = anycount(varl-var3), v(1)
group a variable X, this is what you get || - €9€n numbmis = rowmiss(varl-var3)
list varl var2 var3 numbl numbmis
en Xgrouped = X>2
g group e +
| X Xgrouped | | varl var2 var3 numbl numbmis |
R I |---—- |
1.3 1] 1. | 1 0 1 1]
2.1 2 0| 2.] 1 0 0 1 0 |
3.1 . 1] 3.1 1 1 0 2 0|
4. 11 01 a.1 1 1 1 3 0 |
5. | 4 1] Fomm T e e +
e +)]
* better: Further example: number of valid episodes
gen Xgrouped = X>2 if X<. egen nepi = rownonmiss(ts*)
N.B.: . < .a< .b< ... Further example: max in “time finish”
N.B.: X==. is true only if . egen maxage = rowmax(tf*)
missing(X) is true for
all missing values
Josef Briderl, Useful Stata Commands, SS 2012 Folie 3

Nuts and Bolts Il

Missing Values

misstable summarize //gives overview of MV in the data
misstable patterns //W patterns in the data

mvdecode _all, mv(-1) //-1 is set to . in all variables

mark nomiss //generates markervariable ‘“nomiss”
markout nomiss Y X1 X2 X3 //0=somewhere missing, l=nowhere missing
drop if nomiss == //listwise deletion

Value-Label
label define geschlbl 1 "Man"™ 2 “Woman™
label value sex geschlbl

Display a Scalar Regression Coefficients o

display 5°8 regress, coeflegend //sbows names of c9eff|0|ents
display _b[bild] //displays a coefficient

Formating Output (permanent!)

set cformat %9.4fF, permanently //format of coeff, S_.E, C.I.

set pformat %5.3F, permanently //format of p-value

set showbaselevels on, permanently //display reference category

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 4

Nuts and Bolts IV

I F-Command
if expression {
commands //commands are executed if expression is true

}

GLOBAI Macros

* Directory where the data are stored

global pfadl ~""I:\Daten\SOEP Analysen\Zufriedenheit\Fullsample\"""
* Load data

cd $pfadl //$pfadl is expanded to “I:\Daten\...”

use Happiness, clear

Working with date functions

* Date information is transformed in “elapsed months since Jan. 1960~
gen birth = ym(birthy,birthm) //mdy(M,D,Y) if you have also days
gen birthc=birth

format birthc %tm //%td if you have elapsed days
| id birthy birthm birth birthc |
l-------—————— e | Note that Jan.1960
1.] 1 1961 4 15 1961m4 | is month O herel!
2.1 2 1963 11 46 1963ml11 |
b +
Josef Briderl, Useful Stata Commands, SS 2012 Folie 5

Matching datasets: append and merge

A common task is to match information from different datasets
- append: Observations with information on the same variables are stored
separately
- merge: Different variables are defined for the same observations, but
stored separately

Consider the following SOEP example:

* We have the first two SOEP person data sets ap.dta and bp.dta

» The same 5 persons in each data set

* Variables: person id, year of wave, happiness (11-point scale 0-10, 10=very happy)

ap.dta bp.dta
- + e +
id year happy id year happy

1 901 84 8 1 901 85 8

2 1001 84 9 2 1001 85 6

3 1101 84 6 3 1101 85 7

4 1201 84 8 4 1201 85 8

5 1202 84 8 5 1202 85 8
T + T e +

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 6

Matching datasets: append

e
id year happy
1 901 84 8
2 1001 84 9
3 1101 84 6
4 1201 84 8
5 1202 84 8
6 901 85 8
7 1001 85 6
8 1101 85 7
9 1201 85 8
10 1202 85 8
e
id year happy
1 901 84 8
2 901 85 8
3 1001 84 9
4 1001 85 6
5 1101 84 6
6 1101 85 7
7 1201 84 8
8. 1201 85 8
9. 1202 84 8
10. 1202 85 8

Josef Briiderl, Useful Stata Commands, SS 2012

append the rows of the second file

beyond the last row of the first:

use ap.dta
append using bp.dta

ap.dta is the master-file
bp.dta is the using-file

sort 1d year

Grouping observations of persons

together and ordering them by year
results in a

- panel dataset in long-format.

Each row is called a

- “person-year”.

Folie 7

Matching datasets: merge

Suppose that, for the persons in ap.dta, you need additional information on
variable hhinc which is stored in apequiv.dta. To match variables on identical

observations we can use merge.

ap.dta
SRy +
id year happy
1 901 84 8
2 1001 84 9
3 1101 84 6
4 1201 84 8
5 1202 84 8
e +

ahrwnNPRE

apequiv.dta
U
id year hhinc
901 84 9136.79
1001 84 5773.51
1101 84 10199.25
1201 84 19776.77
1202 84 19776.77
e

use ap.dta

merge 1:1 id using apequiv.dta

e
id year happy hhinc
1. 901 84 8 9136.79
2. 1001 84 9 5773.51
3. 1101 84 6 10199.25
4. 1201 84 8 19776.77
5. 1202 84 8 19776.77

e

STATA added a variable _merge which
equals 3 for all observations. This
indicates that all observations are part of
both files. If there were observations
which occur only in ap.dta (the master-
file), these would get value 1. Obs. which
occur only in apequiv.dta (the using-file),
would have _merge==2. (Naturally, obs.
of the first type would have missings on
hhinc, and obs. of the second type would

have missings on happy.)

Josef Briiderl, Useful Stata Commands, SS 2012

Folie 8

Reshaping datasets from wide- to long-format

1 19 22 1 1 22 26 2 1 26 29 1 0 9
2 23 28 1 1 28 30 2 0 13
e +

reshape long ts tf st fail, 1(id) j(episode)

--- + Here we have two persons, with 3
| id episode ts tf st fail educ | episodes each. In wide format alll
——— | variables from the same episode
1 1 19 22 1 1 9 | need a common suffix. Here we
1 2 22 26 2 1 9 | simply numbered the episodes.

1 3 26 29 1 0 9 | The command for transforming in
___ I long format is reshape long. Then
2 1 23 28 1 1 13 | we list all episode-specific variables

2 2 28 30 2 0 13 | (without suffix). 1 () gives the person
5 3)))) 13 | identifier variable and j () the new
___ + episode identifier variable created by
Stata. All constant variables are
copied to each episode.

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 9

How to repeat yourself without going mad: Loops

An extremely helpful technique to do tasks over and over again are loops. In
Stata, there are (among others) foreach-loops and forvalues-loops.
Both work in a similar way: They set a user-defined local macro to each
element of a list of strings or list of numbers, and then execute the
commands within the loop repeatedly, assuming that one element is true
after the other.

foreach Iname in list {
commands referring to "Iname’ //best for looping over strings
} /lor variable lists

forvalues Iname = numlist {
commands referring to "Iname’ /Ibest for looping over numbers

}

“Iname” is the name of the local macro, “list” is any kind of list, “numlist” is a list
of numbers (Examples: 1/10 or 0(10)100).

The local can then be addressed by ~Iname” in the commands.

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 10

Loops

To append files ap.dta, bp.dta,..., wp.dta, one could type many appends. However, the
following does the same much more efficiently:

use ap.dta

foreach wave inbcdefghijklImnopqgrstuvwd{
append using “wave’p.dta

}
foreach also recognizes varlists: forvalues loops over numlists:
foreach var of varlist tsl-tsl1l0 { forvalues k=1/10 {
replace “var’=. if “var’==-3 replace ts k’=. if ts k’==-3
} be
Finding the month from a date variable:
Second counter: Imagine the month an event has happened is measured in
“k” is the counter. Sometimes || months since January 1983 (months83). From this we want to
we need a second counter, create a new variable (month) telling us, in which month
derived from the first: (January, ..., December) the event happened:
gen month = 0
forvalues k=1/100 { || forvalues j=1/12 {
local 1="k’+1 forvalues k="j7(12)280 {
--- quietly replace month = “j” 1If months83=="k”
by }

} //note that Jan.83 is 1 here!!l

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 11

Loops Example: Converting EH Data to Panel Data

Note: Data are in process time (i.e. age). Therefore, we produce also panel data on an
age scale (sequence data). Normally, panel data are in calendar time (i.e. years).

1 19 22 1 1 22 26 2 1 26 29 1 0 9
] 2 23 28 1 1 28 30 2 0 13 |
e +

egen maxage = rowmax(tf*) //generate the max value for the looping

forvalues j = 15/30 { //panels from age 15 to age 30
generate s™j" = 0 if “J" < maxage //initializing with O
forvalues k = 1/3 {

replace s™j" = st k" if (CjJ" >= ts'k™ & “j" < tF k")

lL o o o O 1 1 1 2 2 2 2 1 1 1 I
S |
]2 o o o o o O O O 1 1 1 1 1 2 2 I
e +

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 12

Computations within panels (long-format)

» With panel data one often has to do computations within
panels (groups)

* This is an example of a panel data set in long-format

— Each record reports the observations on a person (id) in a specific
year

— This is termed “person-year”
— A *“panel” is defined as all person-years of a person

Ry +
| id vyear X |
|---mmmmm - |
1.1 1 84 2]
2.1 1 85 4 |
3.1 1 86 1]
4. 1 1 87 6 |
5.1 1 88 4
6.] 2 84 31
7.1 2 85 4 |
o +

Josef Briderl, Useful Stata Commands, SS 2012 Folie 13

The basic idea

It is essential that one knows the following:
bysort bylistl (bylist2): command
the by prefix; data are sorted according to bylistl and bylist2
and computations are done for the groups defined by bylistl
n system variable, contains the running number of the observation
N system variable, contains the maximum number of observations

— This does the computations separately for each panel:
sort id
by 1d: command

- bysort 1d: is a shortcut

— If the time ordering within the panels is important for the

computations then use
sort i1d year

by i1d: command
- bysort 1d (year): is a shortcut

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 14

Numbering person-years

Example: Numbering the person-years

| id year X recnr pynr pycount |

1.1 1 84 2 1 1 51
2.1 1 85 4 2 2 51
3.1 1 86 1 3 3 5]
4.1 1 87 6 4 4 51
5.1 1 88 4 5 5 51

| == |
6.1 2 84 3 6 1 2]
7-1 2 85 4 7 2 |

o +

N.B.: IT you now drop person-years, due to missing values (casewise

deletion) pycount is no longer correct! Compute it anew.

gen recnr = _n //assigns a record 1D
bysort id (year): gen pynr = n //person-year ID (within person)
bysort id: gen pycount = N //# of person-years (within person)

Example: Statistics over persons
tabulate pycount if pynr== //distribution of person-years

Example: Identifying specific person-years

bysort id (year): gen last 1 if _n==| //last person-year

bysort id (year): gen first = 1 if _n==1 //first person-year

Josef Briiderl, Useful Stata Commands, SS 2012

Folie 15

Using information from the year before

Explicit subscripting

It is possible to address specific values of a variable X (within a group) by using subscripts:

X[1] //X value of first person-year
X[_N] //X value of last person-year
X[_n-1] //X value of person-year before (X[O0] is .)

bysort id (year): gen firstx = X[1] //firstx contains the first X-value

Example: Computing growth
bysort id (year): gen grx = (X — X[_n-1]) 7/ X[_n-1]

id vyear X grx

1.] 1 84 2 . | Note:

2.1 1 85 4 1] Always think about

3.1 1 86 1 -.75 | how your solution

4. | 1 87 6 5] behaves at the

5.1 1 88 4 -.3333333 | first person-year!
R |

6. | 2 84 3 -

7.1 2 85 4 -3333333 |
R +

Josef Briiderl, Useful Stata Commands, SS 2012

Folie 16

Using the lag-operator

The Lag-Operator “L.” uses the observation in t-1.
If this observation does not exist (due to a gap in
the data) L.X returns a missing. X[_n-1] returns the
value of the observation before, irrespective of any

gaps.

bysort 1d (year): gen xn_1 = X[_n-1]
xtset i1d year
gen Ix = L.X

+
| id year X xn_1 Ix |
e |

1.1 1 84 2 ; -

2. | 1 85 5 2 2]

3.1 1 87 3 5 -

4. 1 1 88 7 3 31
o ——_——— +

Josef Briiderl, Useful Stata Commands, SS 2012

Folie 17

Finding statistics of X within persons

bysort
bysort
bysort
bysort
bysort
bysort

1.1
2.1
3.1
4.1

2
6. | 2
7.1 2

id (year): gen cumx = sum(X) //Summing up X

id: egen maxx = max(X) //Maximum

id: egen totx = total(X) //Sum

id: egen meanx = mean(X) //Mean

id: egen validx = count(X) //Number of nonmiss

id: gen missx = _N-validx //Number of missings

___ +

year X cumx maxx totx meanx validx missx |

___ I
84 2 2 7 17 4.25 4 0 |
85 5 7 7 17 4.25 4 0|
86 3 10 7 17 4.25 4 0]
87 7 17 7 17 4.25 4 (O |

___ |
84 4 4 6 10 5 2 1]
85 4 6 10 5 2 1]
86 6 10 10 5 2 1]

___ +

Variant: Finding statistics within person-episodes (spells)

bysort id:
bysort id

Assume that we have a spell-indicator variable “spell”
min(X) if spell==1 //minimum within spelltype 1
min(X) //minimum within each spelltype

gen minX1l
spell: gen minX

The egen command is very helpful (many more functions are available, see help egen):

Josef Briiderl, Useful Stata Commands, SS 2012

Folie 18

Deriving time-varying covariates |

In this context the function sum(exp) is very important (exp is a logical expression)
- exp can be 1 (true), O (false), or .
- sum(exp) returns a 0 in the first person-year also if exp==.

* marr is an indicator variable for the person-year of marriage
bysort id (year): gen ybefore

* |IFf gives the activity status (O=out of If, l=employed, 2=unemployed)
bysort id (year): gen Ifchg = sum(If~=If[_n-1] & _n~=1) //# of changes

bysort id (year): gen married = sum(marr==1) //married=1 after marriage
= married[_n+1]-married //the year before marriage

in If

1.] 1 84 -1 0 0 0 0 |
2.1 1 85 -1 0 0 1 0]
3.] 1 86 1 1 1 0 1]
4.1 1 87 -1 1 1 0 1]
5.1 1 88 -1 1 1 1]
| == |
6. 1 2 84 -1 0 0 0 0 |
7.1 2 85 -1 0 0 1 0 |
8.] 2 86 1 1 1 0 1]
9. | 2 87 -1 2 1 1 2]
10. | 2 88 1 1 2 3]
e e e +
Josef Briderl, Useful Stata Commands, SS 2012 Folie 19
Deriving time-varying covariates Il
Identifying first and last occurrences of specific states. Here unemployment (If==2)
* ldentifying the first occurrence
bysort id (year): gen first = sum(If==2)==1 & sum(1f[_n-1]==2)==
* ldentifying the last occurrence
gsort id -year //sorting in reverse time order
by id: gen last = sum(1f==2)==1 & sum(If[_n-1]==2)== //do not sort again
sort id year
Sy +
| id vyear If first last | Copying time of first occurrence:
l-----------———— | bysort id (First): ///
1.] 1 84 0 0 (O | gen yfirst = year[N]
2.1 1 85 2 1 01
3.1 1 86 1 0 0 |
4.1 1 87 1 0 0 |
5.] 1 88 2 0 1]
| == |
6. | 2 84 0 0 0 |
7.1 2 85 0 0 01
8.] 2 86 1 0 0 |
9.] 2 87 2 1 1]
10. | 2 88 1 0 0 |
Sy +
Josef Briderl, Useful Stata Commands, SS 2012 Folie 20

Missings / gaps in panels

When programming always be aware that there are certainly missings or even gaps
(a whole person-year is missing) in the panels. These have the potential to wreck
your analysis. Consider an example. We want to analyze the effect of being married
on Y. We have a variable on civil status “fam” (O=single, 1=married, 2=divorce):

——— + How to deal with the missing? In this case it
| id vyear fam | might make sense to impute 1 (see the example
[——— | below, on how this could be done). Normally,
1.1 1 84 0 | however, one would drop the whole person-year
2.1 1 85 1] (drop if fam==.) and create thereby a gap.
3.1 1 86 11 This has to be taken into regard, when
4.1 1 o1 11 constructing time-varying covariates (see next
5.] 1 88 2 | :
T I slide).
6. | 2 84 0 |
7.1 2 85 1
8.] 2 86 -
9.] 2 87 1
10. | 2 88 1]
11. | 2 89 1
Ny +
Josef Briderl, Useful Stata Commands, SS 2012 Folie 21

Missings / gaps in panels

Example: Years since marriage

* This is the correct solution taking gaps into account

recode fam 2/max=. , into(marr) //marriage indicator (spell)
bysort id: egen ymarr = min(year) if marr== //finding marriage year
gen yrsmarr = year — ymarr //years since marriage

* This produces a wrong result
bysort id (year): gen yrsmarrl = sum(marr[_n-1]) if marr==

1.1 1 84 0 0) -
2.1 1 85 1 1 85 0 0|
3.1 1 86 1 1 85 1 1]
4.1 1 87 1 1 85 2 2 |
5.1 1 88 2) I

| == |
6.1 2 84 0 0)) I
7.1 2 85 1 1 85 0 0|
8.] 2 87 1 1 85 2 1]
9. 1 2 88 1 1 85 3 2 |
10. | 2 89 1 1 85 4 3]

o +

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 22

Lessons for panel data preparation

* Make yourself comfortable with
— merge and append
— reshape
— foreach and forvalues
— by-Prefix
— egen-functions
— Explicit subscripting
» Always think about what happens with your solution
— In the first person-year
— If there are missings in the panel
— If there are gaps in the panel
 List, list, and list

— After each programming step try to understand what is going on by
listing a few persons (complicated persons with missings, gaps, ...)

— list 1d year .. 1T 1d<4, sepby(id)

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 23

Complex Examples

The following slides contain more complex
examples

Filling up missings with the value from before,
but only in between valid observations

* This is only an exercise, this kind of imputation usually makes no sense

gen X = inc

bysort id (year): gen first = sum(X<.)==1 & sum(X[_n-1]<.)== 0 //Ffirst valid inc
gsort id -year

by id: gen last = sum(X<.)==1 & sum(X[_n-1]<.)== //last valid inc

bysort id (year): gen spell = sum(first)-sum(last[_n-1]) //spell “being in panel”
* Filling in the value from before (this produces a cascade effect)

bysort id (year): replace X=X[_n-1] if X==_ & spell==

* Running # of missings encountered (this is only a little add on)

bysort id (year): gen nmiss=sum(missing(inc))

o +
| id vyear inc X First last spell nmiss |
| == |
1.] 1 84 1000 1000 1 0 1 0 |
2.1 1 85 1100 1100 0 0 1 0]
3.1 1 86 1100 0 0 1 1]
4. | 1 87 . 1100 0 0 1 2 1]
5.] 1 88 1400 1400 0 1 1 2]
| == |
6. 1 2 84 . 8 0 0 0 1]
7.1 2 85 2300 2300 1 0 1 1]
8.] 2 86 . 2300 0 0 1 2]
9. | 2 87 2400 2400 0 1 1 2]
10. | 2 88 - 0 0 0 3]
o +

Josef Briderl, Useful Stata Commands, SS 2012 Folie 25

Imputation of missings by linear interpolation

gen X = inc

bysort id (year): gen first = sum(X<.)==1 & sum(X[_n-1]<.)== 0 //first valid inc

gsort id -year

by id: gen last = sum(X<.)==1 & sum(X[_n-1]<.)== //last valid inc

bysort id (year): gen spell = sum(first)-sum(last[_n-1]) //indicator for spell “being in panel”

gen spellm = 1 if spell==1 & X==. //indicator for missing spell (MS)
bysort id spellm: gen Ispellm=_N if spellm==1 //length of missing spell

bysort id spellm (year): gen nrspellm=_n if spellm==1 //numbering the person-years of MS
bysort id (year): gen incb = X[_n-1] if spellm==1 & spellm[_n-1]==. //last inc before MS
gsort id -year

by id: gen inca = X[_n-1] if spellm==1 & spellm[_n-1]==. //first inc after MS
bysort id (incb): replace incb = incb[1] if spellm==1 //filling up incb
bysort id (inca): replace inca = inca[l] if spellm==1 //filling up inca

sort id year
replace X = incb + nrspellm * ((inca-incb)/(Ispellm+l)) if spellm==1 //imputing missing inc

o e e e +
| id year inc X spellm Ispellm nrspellm incb inca |
= |

1.1 1 84 1000 1000 - - - - -

2.1 1 85 1100 1100 - - - - - | Note:

3.1 1 86 - 1200 1 2 1 1100 1400 | Works only if

4. 1 1 87 - 1300 1 2 2 1100 1400 | there is only

5.1 1 88 1400 1400 | one MS per id
= m |

6. | 2 84 - - |

7.1 2 85 2300 2300 - - -

8. | 2 86 - 2350 1 1 1 2300 2400 |

9. 1 2 87 2400 2400 - |

10. | 2 88 - |
o +

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 26

Creating a balanced panel

Sometimes one would like to “blow up” the dataset to a balanced one. In the following example
the max person-years is 3. We create a new dataset, where every id has 3 observations.

* Starting with the real data (data.dta)

* Creating a list of the ids (idlist.dta)

bysort id: keep if _n==1

keep id

save idlist.dta

clear

set obs 3 //number of observations in balanced panel
gen time = _n

cross using idlist.dta //all pair wise combinations of time and id

merge 1:1 id time using data.dta //merge the real data

DATA.DTA | id time X _merge |
S, + l----------—————— |

| id time X | 1.1 1 1 4 31
|--—————————- | 2.1 1 2 7 3]

1.] 1 1 4] 3.] 1 3 2 31
2.1 1 2 7 1 |- |
3.1 1 3 2] 4. | 2 1 3 3]
|--——-——---———- | 5.1 2 2 . 1]
4.1 2 1 31 6.] 2 3 5 3]
5.1 2 3 5] |---——-—-— |
|--—————————- | 7.1 3 1 . 1]

6.] 3 2 8 | 8.1 3 2 8 31
e e e e T + 9. 1 3 3 - 1|

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 27

Converting EH Data to Panel Data (EH data.do)

EH Data (Marriage Episodes), Calendar Axis

| 1 1971 1990 1993 1 1997 . . 2000 |
| |
| 2 1970 1993 1998 2 . 2000 |
e +

o ——————_———————— + end*:

| id birthy tsl tfl endl ts2 tf2 end2 ts3 inty | 1=divorce
l------------—— | 2=death spouse
| 1 1971 19 22 1 26 29 3 30 2000 | 3=censoring
T |

| 2 1970 23 28 2 31 - 2000 |
Sy Sy Sy Sy S Oy S P Oy OSSP +

Panel Data, Age 17-30 (0O=single, l=married, 2=divorced, 3=widowed)
These data could be used as an input for a sequence analysis!

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 28

Converting EH Data to Panel Data (EH data.do)

gen ageint = inty - birthy //age at interview
egen nepi = rownonmiss(ts*) //number of valid marriage episodes

* Preset state 0 (single) over the whole sequence
forvalues j = 17/30 {
generate s™j" = 0 if "jJ" <= ageint

}

if nepi>0 { //The rest is only for those who married at least once

forvalues k=1/2 {

replace tf k™ = inty if “k"==nepi & tf k"==. //imputing inty for censored episodes
replace end k® = 3 if "k"==nepi & end k"==. //flaging censored episodes with end==3
}
forvalues k=1/2 { //converting years to age
replace ts k™ = ts k" - birthy
replace tf k" = tfF k" - birthy
}
forvalues k=1/2 { //setting the endpoint of the sequence
replace ts k"=ageint+l if “k"==nepi+l
}

gen ts3 = ageint+l if nepi==2

forvalues j=17/30 {
forvalues k=172 {
local I="k"+1

quietly replace s™j" =1 if “J">=ts k" & "j"<=tf k- //married
quietly replace s™j° = 2 if “J">=tfF'k" & "j"< ts'I" & end"k"==1 //divorced
quietly replace s™J" = 3 if “J">=tfF k" & "J"< ts™I" & end"k"==2 //widowed

Josef Briiderl, Useful Stata Commands, SS 2012 Folie 29

