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Lernziele

» Praktische Umsetzung der EHA mit STATA

— Die grundlegenden STATA-Befehle sind in den Folien enthalten

— Zusatzlich kann man anhand der begleitenden STATA Do-Files die
Berechnungen nachvollziehen

« Darstellung und Interpretation der Ergebnisse

— Insbesondere die graphische Darstellung der Ergebnisse wird betont
(,Das Zeitalter der Regressionstabelle ist vorbei®)
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Chapter I:
Introduction

Basic Idea

« Event History Analysis = EHA

— German: Ereignisdatenanalyse
* EHA investigates the “causes” of events
— What affects the duration until an event happens?

— Events are transitions between states
- From life to death (persons, organizations, political systems)
- Demography: ,survival analysis®
- From functioning to kaput (machines)
- Quality control: ,failure time analysis®
- From unemployed to employed
- Economics: “transition data analysis”, “duration analysis”
- From lower class to upper class
- Sociology: “event history analysis”
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Analytical Strategy

* Dependent variable: duration
— Why not simply use OLS?
— Problem: in most cases some observations will be (right) censored
— EHA takes care of censoring
- EHA is a special case of censored regression (similar to Tobit)
* |s EHA really longitudinal?
— Cameron/Trivedi classify EHA as cross-sectional method

— EHA works like cross-sectional regression: Causal inference
comes from comparing durations of different people
- Are women longer unemployed than men?
— “Real” longitudinal analysis compares people over time (i.e. PDA)
— EHA is longitudinal in a wider sense: time enters the analysis
- Dependent variable is duration

- Independent variables might change their value over time
(time-varying covariates)
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Basic Concepts |: Event History

» Discrete state space Y(t), continuous time T |+ Multi-state model

— Event history: — More than one destination
during an observation window (t,, t,) the «  Multi-episode model
states occupied by a person are registered _ Repeated events

. . * Count data
observation window

vit 4 — Count of a particular state
®) * Sequence data
3T -- — The sequence of states
out of labor At t, an event happens: * Panel data
- origin: employed — States occupied at certain
- destination: unemployed time points
2 +
unemployed duration of episode: « Continuous state space
inl — Use methods of PDA
episode — Nevertheless some famous
1+- German sociologists use
employed R EHA (Blossfeld, Klein)
t 4 b t, , T — They have to throw away
information, when grouping
the data
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Basic Concepts |l: Population at Risk

* Population at risk

First marriage First divorce Second marriage

Singles :
Married Divorced/
Widowed

’ Author: Marita Jacob ‘
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Basic Concepts lll: Calendar and Process Time

Calendar time axis Process time axis
(x- axis calendar years, censoring marked with circle) (x-axis duration of study, censoring marked with circle)
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Author: Marita Jacob
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Chapter Il:
Event History Data Structures

Collecting retrospective life histories

532 WMurcen Sie mis bitie fr dle fve Bren, begimend mil dar esien, jewels saen, nam die e geschicssen
rrande und warn se ender]

=~ Bitte alle Heirals- und Scheidungs- baw. Verwiwungsdaten eintiagen!
Oel den vovherigen then informel emitteln, ob sie durch Scheklung

% Heirat Mona

oder Tod des Ehepatners endeten! marital life history
from German
Scheldungsjshr, Yodesjahr, Familiensurvey 2000
wem Lhe wenn
Heiratsjahr geschieden verwitwet
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Event History Data Structures (,EH data.do”)

Example: marital life histories of two persons

list id - educ, sepby(id)

1.1 1 1971 1990 1993 1 1997 2000 9 |
---------- |
2.1 2 1970 1993 1998 2 2000 13 |
Sy +
id: person identifier
birthy: year of birth
ts*: year marriage starts (time start)
tf*: year marriage ends (time finish)

end*: reason marriage ends (1=divorce, 2=death of spouse)
inty: year of interview
educ: education in years

— These are EH data in wide format
- multi episode
— Person 1: 2 marriages, 2. marriage ongoing at interview (censored)

— Person 2: 1 marriage ending in widowhood
Josef Briderl, Event History Analysis, May 2012 13

EH Data: Episode Data Set

. * Transform to long format (episode data set)
. reshape long ts tf end, i(id) j(episode)

Data wide -> long
Number of obs. 2 -> 4
Number of variables 10 -> 8

J variable (2 values) ->  episode

Xij variables:
tsl ts2 -> ts
tfl tf2 -> tf

endl end2 -> end
Sy +
| id episode ts tf end birthy inty educ |
| = |
1. ] 1 1 1990 1993 1 1971 2000 |
2.1 1 2 1997 . 1971 2000 9 |
| == |
3.1 2 1 1993 1998 2 1970 2000 13 |
4. | 2 2 . 1970 2000 13 |
A +

These are EH data in long format (episode data set).
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EH Data: Continuous-Time EHA of Marriage Duration

. drop if ts==. //selecting the valid marriage episodes

. replace tf=inty if(tf==. //missing tf set to interview year

. gen tfp = tf-ts //tf transformed to process time (=duration)
. gen fail = end==1 //failure indicator (1=divorce, O=censoring)

. stset tfp, failure(fail==1) //declaring the data to be "survival time"
failure event: fail ==
obs. time interval: (0, tfp]
exit on or before: failure

T + PROCESS TIME

1.1 1 1 3 1 o 3 1 |
2.1 1 2 3 0 0O 3 0 9 |
| == |
3.1 2 1 5 0 0O 5 0 13 |
e +

e e + CALENDAR TIME
| id episode ts tf fail t0 _t d educ |
| = o e oo |
1. ] 1 1 1990 1993 1 0 3 1 9
2.1 1 2 1997 2000 0 0 3 0 9
ettt |
3.1 2 1 1993 1998 0 0 5 0 13 |
e +
Josef Briderl, Event History Analysis, May 2012 15

EH Data: Discrete-Time EHA of Marriage Duration

. gen recid = _n //create an id for each episode (nheeded for stsplit)
. stset tfp, failure(fail==1) id(recid)
. * Prepare the data for discrete-time analysis
. stsplit T0, every(1) //person-period episode splitting
list id recid ts tf fail _t0O _t _d educ, sepby(episode)
o +
| id recid ts tf fail to _t d educ |
| == |
1.1 1 1 1990 1993 0 1 0 9 |
2.1 1 1 1990 1993 1 2 0 9 1
3.1 1 1 1990 1993 1 2 3 1 9 |
[ = mm |
4.1 1 2 1997 2000 1 0 9 1
5.1 1 2 1997 2000 1 2 0 9]
6 1 2 1997 2000 0 2 3 0 9]
== |
7.1 2 3 1993 1998 0 1 0 13 |
8. |1 2 3 1993 1998 1 2 0 13 |
9. | 2 3 1993 1998 2 3 0 13 |
10. | 2 3 1993 1998 3 4 0 13 |
11. ] 2 3 1993 1998 0 4 5 0 13 |
o +

These are EH data in long-long format (episode splitting).
Josef Briderl, Event History Analysis, May 2012 16
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Chapter lll:
Continuous-Time
Event History Analysis

Continuous-Time EHA

* In the following:
— Single-episode (absorbing event), single-state EHA
* Process time T is a continuous random variable
— It seems straightforward to analyze E(T) or E(T|X)
— However, due to historical reasons:
- One mostly estimates probability functions of T (rate functions, r(t|X))
« Contents of this chapter:
— Basic concepts
— Non-parametric models
- Life-Table (Kaplan-Meier) estimation of r(t) and S(t)
— Parametric models
- ML estimation of proportional hazard regression models
- ML estimation of accelerated failure time regression models
— Semi-parametric models (Cox model)
- Partial likelihood estimation of proportional hazard regression models

Josef Bruderl, Event History Analysis, May 2012 18




Basic Concepts

t
Failure function F(t)=P(T <t)= f(u)du
— Probability of an event until t 0

. <
| | F(0) = lim Pt<T t+At):6F(t)
Density function At—0 At ot
— (Limit of unconditional) probability that an event happens in [t, t+Atf]

Survivor function S(t)=P(T >t)=1-F(t)
— Probability of no event until t (of surviving until t)

. P<T<t+At|T >t) f(t)
. t)=1 =
Rate function () AtSD At S(t)

— (Limit of ) conditional probability that an event happens in [t, t+At]
given that there was no event until t (“momentary” risk)

— Hazard rate (also: transition rate, failure rate, risk function, ...)

Josef Briderl, Event History Analysis, May 2012 19

Rate Function

* You watch the videotaping of a soccer game and someone told you before that
it ended 1:0

F 1(1)=1/(90-t)

|
. il
|
. /
: =0

Author: Frank Kalter
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Patterns of Duration Dependence

¢ leaving unemployment: t“ human mortality:
ratq monotonic declining ratq bathtube shaped

time time

rate i_first child: ¢ union separation:
inverted-U shaped rate sickle shaped
time time
Josef Briderl, Event History Analysis, May 2012 21

The Rate Determines the Rest

H(t) = L: r(u)du cumulative hazard rate

- 10_ FO
S@t) 1-F()
H(t) =] r(u)du= fﬁ:éfﬂ) du = [~ In(L— F (u))]} =

=—In(l—-F(t)) =—InS(t)

— S(t) — e_f(tJ r(u)du _ e—H(t)
= F({t)=1-¢"®
= f{t)=r(t)e """
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The Rate Determines the Rest

rt) fit)
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Author: Frank Kalter
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Non-Parametric Methods: Life-Table

 Divide time axis in L intervals I, = [1, 4, T,)

— A, length of I,
— E, number of episodes
— Z, number of censored
— N, number of episodes
— Ry “risk set” in |, (R, =

« Estimation formulas
— = B/ Ry
— Sk =Sk (1-9y)
= £ = (Skq - S 1 A
- r,=1/0.5(S-S))

Josef Bruderl, Event History Analysis, May 2012

with eventin |,

episodes ending in [,

entering I, (N,=N,_—E,—2Z,)
N,—0.5-Z))

conditional probability of “death”)
survival probability at end of |,)

,mean“ density in |,)

(
(
(
(

density divided by “mean” survival prob.)
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Non-Parametric Methods: Kaplan-Meier

 Intervals are not determined arbitrarily, but by the data
— Interval boundaries when at least one event happens
— Ties: events come before censored episodes

é(t)=H(1—%)

« Disadvantage: no estimator of hazard rate
— In Stata a “smoother”-solution is available

Josef Briderl, Event History Analysis, May 2012 25
Example: Entry into Motherhood
* Entry into (first) motherhood for German women
— Data extraction from Allbus 2000: “allbO0 Datenaufbereitung.do”
— EHA with “motherhood*.do” (data in “motherhood.dta”)
. stset duration, failure(child==1)
failure event: child ==1
obs. time interval: (0, duration]
exit on or before: Tailure
1472 total obs.
1099 failures in single record/single failure data
duration: age first child born (if failure episode)
age at interview (if censored episode)
(process time starts at age 14,
only information on years is used)
child: 1=child born, O=censored episode
education: education iIn years
east: O=West German, 1l=East German
coh*: 1=1904-1925, 2=26-40, 3=41-50, 4=51-65, 5=66-81
Josef Briderl, Event History Analysis, May 2012 26




Example Motherhood: Listing the Data

. * Check what stset did

. list persnr duration child _tO0O _t _d educ east cohort in 1/10, nol
e +
| persnr duration child _t0 _t d educ east cohort |
| = |
| 1 20 0 0 20 0 17 0 4 |
| 2 14 0 0 14 0 13 0 5]
| 3 17 0 0 17 0 11.5 0] 5]
| 4 62 0 0 62 0 9 . 1]
| 5 7 1 0 7 1 9 0] 2]
| = |
| 6 11 1 0 11 1 10.5 . 1]
| 7 10 0 0 10 0 13 0 5]
| 8 12 1 0 12 1 11.5 0] 4 |
| 9 7 0 0 7 0 13 0] 5]
| 10 5 1 0 5 1 9 . 2]
gy gy gy My My Sy Sy Sy Sy SRS +

Josef Briderl, Event History Analysis, May 2012 27
Itable duration child, survival hazard 1i(0 6 11 16 21 26 36)
Beg. Survival Std.
Interval Total Deaths Lost [at end] Error [95% Conf. Int.]
0 6 1472 134 32 0.9080 0.0076 0.8919 0.9217
6 11 1306 475 68 0.5689 0.0132 0.5426 0.5943
11 16 763 333 64 0.3097 0.0127 0.2850 0.3348
16 21 366 115 36 0.2074 0.0115 0.1852 0.2305
21 26 215 35 33 0.1708 0.0110 0.1498 0-.1930
26 36 147 6 32 0.1630 0.0110 0.1421 0.1852
36 109 1 108
Beg. Cum. Std. Std.
Interval Total Failure Error Hazard Error [95% Conf. Int.]
0 6 1472 0.0920 0.0076 0.0161 0.0014 0.0134 0.0188
6 11 1306 0.4311 0.0132 0.0918 0.0041 0.0838 0.0999
11 16 763 0.6903 0.0127 0.1180 0.0062 0.1059 0.1301
16 21 366 0.7926 0.0115 0.0792 0.0072 0.0650 0.0934
21 26 215 0.8292 0.0110 0.0387 0.0065 0.0259 0.0514
26 36 147 0.8370 0.0110 0.0047 0.0019 0.0009 0.0084
36 109 0.8400 0.0112 -

Josef Bruderl, Event History Analysis, May 2012
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Example Motherhood: Kaplan-Meier Estimation

sts graph, survival tmax(30) ci

sts graph, hazard tmax(30) ci width(2)

Kaplan-Meier survival estimate Smoothed hazard estimate

1.0

0.12
0.9
® 0.8 0.10
S 07
T 0.71 o)
=2 L 0.08-
5 0.6 ©
>
505 £ 0.06-
£ 0.4 S
8 031 £ 0.04
g0
5 0.2 0.02-
0.1
0.0 0.00

15 10 15 20 25 30
age - 14 age - 14

20 25 30

‘ 95% ClI Survivor function ‘ 95% ClI Smoothed hazard function

» Life-table suppressed (would be very long)

» KM survivor function is a step-function

« Step-width given by event timing (here mostly every year events happen)
» Median (S(t)=0.5): 12 years (= age 26)

* The fertility rate approaches 12% (!) at age ~27

Josef Briderl, Event History Analysis, May 2012 29

Example Motherhood: Comparing East/West

sts graph, survival by(east) ci tmax(30)

Kaplan-Meier survival estimates

1.0 95% Cl West . Sts test east
0.9+
95% Cl East failure _d: child == 1
@ 0.8 analysis time _t: duration
QD 0.7
i) Log-rank test for equality of
S 0.61 survivor functions
c 0.57
e | Events Events
Tt 04
o east | observed expected
& 0.3
@) o1 e T e ] mm————— Fe———————————————
S oo west | 525 623.46
east | 431 332.54
o1y e
0.0 Total | 956 956.00
0 5 10 15 20 25 30 chi2(1) = 49 37
age - 14 Pr>chi2 = 0.0000
Josef Briderl, Event History Analysis, May 2012 30




proportion childless
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Example Motherhood: Ignoring Censoring

Survival Curves by Birth Cohort

including censored cases

e o =
o © O
! 1 ! !

o o o
N W s
! ! ! ! !

;'g’ 95% Cl 1951-65
1 95% ClI 1966-81
® 0381 Only the two youngest cohorts used.
% 07
= 06 . .
S o5 This graph shows the KM estimates:
o .
£ 04 Censored observations are treated
ggz as “censored” in the estimation.
0.1
0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
age - 14
Survival Curves by Birth Cohort Survival Curves by Birth Cohort
excluding censored cases treating censored cases as events
95% Cl 1951-65 1.07 95% Cl 1951-65
95% Cl 1966-81 0.91 95% Cl 1966-81
@ 0.8
()]
E 0.71
.5 0.6
c 0.59
k)
€ 0.4
g
8 0.3
Q 0.29
0.1
0.0
5 10 15 20 25 30 0 5 10 15 20 25 30
age - 14 age-14
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Parametric Hazard Models

Cross-sectional analysis
— Non-parametric: cross tabulation
— Parametric: regression

Non-parametric methods not ideal for multivariate analysis
— Curse of dimensionality: many covariates — too much subgroups
— Continuous covariates — information loss by grouping

Parametric models are more helpful
— Specify an explicit mathematical function for the rate function
— These functions contain parameters

— The effect of the covariates on these parameters is also modeled
by explicit functions

— The fully specified model and its parameters are estimated by
Maximum-Likelihood (ML)

Josef Briderl, Event History Analysis, May 2012 32




The Proportional Hazard Model

* The PH model is the most widely used specification:

rt)=r,t)e™™ =rt)-o"-...-a;’

— 1o(t) is the base rate (a mathematical function)
To complete the model one has to specify a base rate
— exp(B‘x) specifies the covariate effect
- exp(.) chosen to avoid negative rate predictions
— Interpretation:
- Magnitude of B not interpretable
- Sign interpretation: direction of covariate effect

- Hazard ratio (or relative risk) interpretation:
a (=exp(B)) gives the multiplicative effect on the rate
(a-1)-100 interpretable as a percentage effect

— Assumption: covariates shift the rate proportionally up or down

Josef Briderl, Event History Analysis, May 2012 33
Proportionality Assumption
0.200-
0.175-
0.150
0.125-
Q
5 0.100-
0.075-
0.050- a<
0.025+
0.000+
0
t
b bl bll
aa a 77
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Some Models for the Base Rate |

« Exponential model
— Constant rate model: ry(t) = a,
- Unrealistic constant rate assumption, seldom used
— Piecewise-constant rate model: constant rate over intervals
- Base rate is a step-function. Very flexible model, therefore often used
- Not implemented in Stata (estimable after episode splitting, see below)

¢ WelbU” mOdeI Weibull rate: alpha=0.1, p varying
0.30
_ p-1
rO (t) - pt 050 0.25]
. 0.20
— pis a shape parameter o
(p=1: exponential model) e
0.10
— Standard model for monotonic - N—
duration dependence '
. . 0.00
— Commands for plotting rates in 0 5 10 15 20
“‘Rate Plots.do” t
p=0.8 p=1.0
p=1.2 p=2.0
Josef Briderl, Event History Analysis, May 2012 35

Some Models for the Base Rate Il

p(At)""

* Generalized log-logistic model o
1+(At)P °

— p: shape parameter, A: scale parameter
— Introduced by Bruderl (1991)

— Generalizes the log-logistic (see below), by including a third
parameter (a,). Thereby, the log-logistic becomes a PH model

— Ideal for sickle shaped rates (with long honeymoon, see p=4)

— Unfortunately not yet implemented in Stata
Gen-loglog rate: alpha=0.1, lambda=0.2, p varying

p=0.5 p=1.0
p=2.5 p=4.0

o (t) =

0.30

0.25

0.10- \

0.05 \

0.00

rate
o
o

0 5 10 15 20
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Maximum-Likelihood (ML) Estimation

* ML principle

— We have a model f(t;; 8) with parameters 0

— We have data t;

— ML estimator:

Value of 6 that maximizes the likelihood of the data given the model

 Likelihood of rate models

— Failure observation: f(t; O) (6=1)

— Censored observation:  S(t;; 0) (6=0)

— Assuming independence of observations

LO=TT1:0) ;0" =T]r(;:0)-S:0)" S 6) S, 0) * =

:ﬁr(ti; ‘9)5i 'S(ti; 9)

n

InL(0) = Zn:[éi Inr(t; 0)+InS(t; 0)]= Z[&i Inr(t; 0) —J'; r(u; 0) du}

i=1 i=1

Josef Briderl, Event History Analysis, May 2012 37

ML Estimation: Constant Rate Model

rit;a)=a

St;a)= exp(—j;i a du) =exp(-t.a) also: exponential model

InL(a) = Zn:[@ ‘Ina—1In e‘ti“]:

=1In azn: 0, — azn:ti
i=1 i=1

w _1 Z S, - Zti =0 setting first derivative equal zero
o a ia i=1

D.6,  number of failures

=>a= = :
Dt sumof alldurations

Josef Briderl, Event History Analysis, May 2012 38




PH-Example: Divorce By Religion

.014
i Data: German Family
012- Survey 1988
o .0104
© i
S .008-
c
%g i
‘o 006+ .
'S | - Kath. (Loglog)
»  .004- —_ Gen log-log
- Evang. (Loglog)
i —
002i _Kath (Sterbet.) Life-table
0.000 - Evang. (Sterbet.)

0 5 10 15 20 25 30

Ehedauer in Jahren
— Generalized log-logistic rate model of divorce of first marriage
— Divorce rate regressed on religion (1=catholic, O=protestant)

— The ML estimator of a is 0.65, i.e. the relative divorce risk is lower by the
factor 0.65 for catholics (-35%)

Josef Briderl, Event History Analysis, May 2012 39

Example Motherhood: Exponential Regression

. streg educ east coh2 coh3 coh4 coh5, dist(exponential)
Iteration O: log likelihood = -1623.8601
Iteration 1: log likelihood = -1572.6635
Iteration 2: log likelihood = -1570.9962
Iteration 3: log likelihood = -1570.9939
Iteration 4: log likelihood = -1570.9939
Exponential regression -- log relative-hazard form
No. of subjects = 1295 Number of obs = 1295
No. of failures = 955
Time at risk = 18289
LR chi2(6) = 105.73
Log likelihood = -1570.9939 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>]z] [95% Conf. Interval]
_____________ e
educ | -9456871 -0132148 -4.00 0.000 -920138 -9719456
east | 1.36078 .0891072 4.70 0.000 1.196876 1.54713
coh2 | 1.508362 .1894242 3.27 0.001 1.17926 1.929309
coh3 | 2.199813 .2882316 6.02 0.000 1.701597 2.843903
coh4d | 2.375027 .2893895 7.10 0.000 1.870477 3.015676
coh5 | 1.321473 .1905237 1.93 0.053 -9961758 1.752994

Josef Briderl, Event History Analysis, May 2012 40




Example Motherhood: Model Fit / Interpretation

’stcurve, survival atl(east=0) at2(east:1)‘

Kaplan-Meier survival estimates

Exponential regression

1.09 95% Cl West 1.0- T West
0.91 95% ClI East 0.99 East
o 0.8 o 0.81
[72) n
9 0.7 9 0.7
S S
= 0.6 Z 0.6
(&) [}
c 0.51 c 0.51
Rl o
€ 0.4 € 0.4
g g
S 03 S 0.31 _
Q02 QS 0.2 ~—
0.1 0.1
0.0 0.0
0 5 10 15 20 25 30 5 10 15 20 25 30
age - 14 age - 14

* Model fit can be assessed graphically by comparing non-parametric
estimates with model estimates

+ These are conditional-effect plots which are also nice graphs for
visually interpreting regression coefficients
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Cox Regression
« Coxmodel r(t)=rt)e"™ =r@t)a" ...’

— Base rate left unspecified, no constant in the model!

— Semi-parametric model

— Most popular rate model
- Very flexible model, if interest is only in effects of covariates
- Robust against misspecification of the base rate

— ML estimation not possible, but partial-likelihood (Cox 1972)
- Order episodes by duration (tie: censoring after failure)
- At every failure time (i=1,...,q) calculate the “risk set” R,
- At every failure time calculate the probability of an event P,
- Multiply over all failure events and maximize partial-likelihood (PL)

— Properties exp(B'x,)
- Same as ML i ZeXp(B'Xk)
- Exact timing irrelevant, only ordering! keR,
- |

(PBr?:sl,(leor\r/]vSavglrtJ?;;(?;ation) PL(B) = ﬁ exp(p'x;)
i1 ZeXp(B'Xk)
Josef Bruderl, Event History Analysis, May 2012 < 42




Example Motherhood: Cox Regression

. stcox educ east coh2 coh3 coh4 coh5
Iteration O: log likelihood = -6212.7873
Iteration 1: log likelihood = -6152.235
Iteration 2: log likelihood = -6151.6143
Iteration 3: log likelihood = -6151.6142
Refining estimates:
Iteration O: log likelihood = -6151.6142
Cox regression -- Breslow method for ties
No. of subjects = 1295 Number of obs = 1295
No. of failures = 955
Time at risk = 18289
LR chi2(6) = 122.35
Log likelihood = -6151.6142 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>]z] [95% Conf. Interval]
_____________ e
educ | -9249533 .0132714 -5.44 0.000 -8993041 -9513339
east | 1.551565 .1024632 6.65 0.000 1.363194 1.765965
coh2 | 1.409074 .1771416 2.73 0.006 1.101349 1.802779
coh3 | 1.903685 .2502955 4.90 0.000 1.471226 2.463262
coh4 | 1.832512 .224634 4.94  0.000 1.441134 2.330179
coh5 | 1.06304 .1554013 0.42 0.676 .7982077 1.415739
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Example Motherhood: Model Fit / Interpretation

stcox educ east coh2 coh3 coh4 coh5, basehc(hrl)
stcurve, hazard atl(east=0) at2(east=1)

’sts graph, hazard by(east) ‘

Non-parametric hazard estimate Cox model hazard estimate

0.150 Wost 0.150 Wost
East
0.125- East 0.125-
© 0.100+ @ 0.1001
o ©
2 0.075 £ 0.0751
i~ €
£ 0.050 Q 0.050 -
0.025 0.025
0.000 0.000
0 5 10 15 20 25 30 0 5 10 15 20 25 30
age - 14 age-14

* Model fit can be assessed graphically by comparing non-parametric
estimates with model estimates

» These are conditional-effect plots which are also nice graphs for
visually interpreting regression coefficients
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Example Motherhood: Testing the PH-Assumption

. stcox educ east coh2 coh3 coh4 cohb5
. estat phtest, detail //formal test via Schoenfeld residuals

Test of proportional-hazards assumption

| rho chi2 df Prob>chi2
____________ e —————————————————————————
educ | 0.19187 35.98 1 0.0000
east | -0.12778 16.02 1 0.0001
coh2 | -0.10901 11.28 1 0.0008
coh3 | -0.15241 21.71 1 0.0000
coh4 | -0.15674 23.33 1 0.0000
coh5 | -0.11283 12.28 1 0.0005
____________ e e ————————————————————————
global test | 66.83 6 0.0000

* PH assumption is violated all over
— Thus, we should use a non-PH model

* Formulas and more diagnostics can be found in
Cleves et al. (2010: chap. 11)
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Accelerated Failure Time Models

* Not everything is proportional
« Alternative model class

— Accelerated failure time (AFT) models
— Modeling failure time E(T|X)

Int=pix+¢

— Error (¢) distribution:
- Logistic: log-logistic model
- Normal: log-normal model
- Gamma: gamma model

— Interpretation:

- B+<0: duration decreases (accelerated failure time)
B.>0: duration increases (decelerated failure time)

- exp(B-) multiplicative effect on time scale (time ratio)

Josef Bruderl, Event History Analysis, May 2012
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The Log-Logistic Model

» Corresponding rate model:
A(A1)P
1+ (At)°
— p: shape parameter (p>1: sickle shaped rate function)
— A: scale parameter (with increasing A, time is accelerated)

. Wwhere A1=¢f*

- Regression is on the time scale Log-logistic rate: p=2.5, lambda varying
- Example: >0 0-307 lambda=0.20
. . . . lambda=0.15
With increasing X, increases 0.25 ombdz0 10

the rate and peak is earlier
— Note that B = -p-B-
- Rate and AFT estimates
show opposite signs!
- Example: B.>0
With increasing X,
increases time until failure 0.004

With increasing X, 0 5 10 15 20
decreases the rate t

0.20

rate

0.154

0.104

0.05
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Example Motherhood: Log-Logistic Regression

. streg educ east coh2 coh3 coh4 coh5, dist(loglogistic)
Loglogistic regression -- accelerated failure-time form
No. of subjects = 1295 Number of obs = 1295
No. of failures = 955
Time at risk = 18289
LR chi2(6) = 163.32
Log likelihood = -1267.7357 Prob > chi2 = 0.0000
_t ] Coef.[B.] Std. Err. z P>|z] [95% Conf. Interval]
_____________ o o
educ | -0653691 .0081826 7.99 0.000 -0493315 -0814067
east | -.3085587 .0387278 -7.97 0.000 -.3844637  -.2326537
coh2 | -.2868418 .0788732 -3.64 0.000 -.4414304  -.1322532
coh3 | -.5218809 .0828435 -6.30 0.000 -.6842511  -.3595107
coh4 | -.4708108 .0764561 -6.16 0.000 -.6206621  -.3209596
coh5 | -.1997183 .083216 -2.40 0.016 -.3628187 -.036618
cons | 2.19301 -1071321 20.47 0.000 1.983035 2.402985
_____________ e
/In_gam | -9450674 0275389 -34.32 0.000 -.9990426  -.8910921
_____________ e
[1/p] gamma | -3886534 0107031 -3682318 .4102075
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Example Motherhood: Marginal Effects on Median Duration

Marginal

effects after streg
Predicted median _t (predict, median time)

12.204045

. 7977673
-3.688528
-3.220871
-5.363476
-5.360068
-2.314384

. mfx compute, predict(median time) nose

11.8707
-420077
-197683
-149035
-332819
-232432

(*) dy/dx is for discrete change of dummy variable from O to 1

* Median duration is 12.2 (age 26.2)

« Each year of education increases the median by 0.8 years

« East German women have a median 3.7 years lower (age 22.5)

Josef Bruderl, Event History Analysis, May 2012
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Example Motherhood: Model Fit / Interpretation

Non-parametric hazard estimate

0.150 1

0.1254

0.100 1

0.075 1

fertility rate

0.050 1

0.025 1

0.000

West
East

fertility rate

10 15
age - 14

25 30

Log-logistic model hazard estimate

0.150 1

0.1254

0.100 1

0.075 1

0.050 1

0.025 1

West
East

0.000 1

10 15

age - 14

20 25 30

* Model fit can be assessed graphically by comparing non-parametric
estimates with model estimates

» These are conditional-effect plots which are also nice graphs for

visually interpreting regression coefficients

Josef Bruderl, Event History Analysis, May 2012
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Example Motherhood: Comparing Regressions

. estimates table exponen cox loglog, stats(b t) b(%9.2F) t(%9.2F) ///

> equations(l) keep(educ east coh2 coh3 coh4 coh5)
Variable | exponen CcOX loglog

_____________ e

educ | -0.06 -0.08 0.07

| -4.00 -5.44 7.99

east | 0.31 0.44 -0.31

| 4.70 6.65 -7.97

coh2 | 0.41 0.34 -0.29

| 3.27 2.73 -3.64

coh3 | 0.79 0.64 -0.52

| 6.02 4.90 -6.30

cohd | 0.87 0.61 -0.47

| 7.10 4.94 -6.16

coh5 | 0.28 0.06 -0.20

| 1.93 0.42 -2.40
_____________ e e
legend: b/t

» Even mis-specified rate regression models produce reasonable results!
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Model Selection
» Graphical comparison of rate or survivor functions

* Nested models (e.g. Weibull vs. Exponential)
— LR-Test or Wald test (testing parameter restrictions)

* Non-nested models: information criteria (IC)

— AIC: -2-InL+2-k k: model degrees of freedom
— BIC: -2 -InL +In(N) - k N: number of observations

- -2 InL: large value - bad fit

-2k large value = complex model

- Choose the model with the smallest IC
Models are punished for complexity

* Motherhood example

. estimates stats exponen loglog

Model |  Obs  II(ull)  Il(model) df AIC BIC
_____________ o
exponen | 1295  -1623.86 -1570.994 7 3155.988  3192.152
loglog | 1295 -1349.395 -1267.736 8 2551.471  2592.801

— Models have to be comparable: do not compare streg and stcox!!
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Time-Varying Covariates

» EHA follows processes over time
— Some covariates might change their values over time
— These we call time-varying covariates (TVCs)

— EHA can take regard of TVCs, thus one can investigate, whether a
change in X causes an eventon Y later on

v | X changes at t, and this (presumably)
0 triggers an subsequent eventon Y. If
_ many persons in the data set show
X 1 such a pattern, we would estimate a
0L | positive effect of X on the rate.
0 ty t, T

 |tis a big advantage of EHA that it can take care of TVCs

— Cannot be done with a standard likelihood
- Exception: it works with partial likelihood
— But a simple data management “trick” will do the job:
episode splitting
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Episode Splitting

« Episode splitting is data management

— Split up each episode, when X changes value
- First split (0, ty): censored
- Second split  (t,, t;): failure

— Within each split X is time-constant

* Log-Likelihood contribution of the two splits
first split : —ﬁo r(u| X =0)du
secondsplit: Inr(t,| X = 1)—.[:r(u | X =1)du
sum: Inr(t,| X =1)-["r(u| X =0)du —j:r(u | X =1)du

— The sum is identical to a standard likelihood contribution
(but X changes now its value at t,)

— The likelihood is therefore not “inflated” by episode splitting
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Episode Splitting in Stata
» In Stata with stsplit (see “Example Episplit.do”)
— Only when X changes
— Easier: “person-period” episode splitting
- Split at each time point (producing a person-period file)

- Advantage: especially useful if many TVCs, discrete-time models can be used

- Disadvantage: blows up your data set unnecessary
(but computer memory is nowadays usually no problem)

o + . stset T, failure(FAIL==1) id(ID)
. stsplit T0, every(l)
: 1D T FAIL xT I ..gen X = TO >= XT // the time-varying covariate
-------------------- S =
2.1 2 8 1 9 1 1D TO T FAIL XT X t0 _t d st
=== L | |, |y s
7. 2 0 1 - 9 0 0 1 0 1
8- 1 3 4 o 1l 8| 2 1 2 T 9 0 1 2 0 1
|- | 9. 2 2 3 ) 9 0 2 3 0 1
4. | 4 3 1 21 10. 2 3 4 . 9 0 3 4 0 1
|- | 11. 2 4 5 - 9 0 4 5 0 1
12. 2 5 6 - 9 0 5 6 0 1
5-1 5 2 1ol 13.] 2 6 7 9 0 6 7 0 1
o + 14. 2 7 8 1 9 0 7 8 1 1
T: duration (say in months) | | = |-——————--———mmm
FAIL: failure indicator 15. 3 0 1 - 1 0 0 1 0 1
XT: time when X changes %g' 3 % % - % % % % 8 %
from O to 1 18. 3 3 4 0 1 1 3 4 0 1
19. 4 0 1 - 2 0 0 1 0 1
20. 4 1 2 - 2 0 1 2 0 1
21 4 2 3 1 2 1 2 3 1 1
22. 5 0 1 - 0 1 0 1 0 1
23. 5 1 2 1 0 1 1 2 1 1
o +
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Example Motherhood: Effect of Being in Education

Institutional effect (“Motherhood 2.do”)
— Visiting an educational institution should decrease fertility

— We introduce a TVC “in education” (ineduc)
- ineduc=1: the years a women is in school/university
- Typical career: in school/university until age “educ+6”

. stset duration, id(persnr) failure(child==1) //id() needed for splitting

1472 total obs.

21206 total analysis time at risk, at risk from t = 0
: stsplit TO, every(1) //“person-period"” episode splitting
(19734 observations (episodes) created)
: gen ineduc = TO <= (educ+6-14) // constructing the time-varying covariate
e +
| persnr _t0 _t _d educ ineduc |
= T |
21. | 2 0 1 0 13 1]
22_ | 2 1 2 0 13 1]
23. | 2 2 3 0 13 1]
24 | 2 3 4 0 13 1] This is essentially a
25. | 2 4 5 0 13 1] person-year data file
26. | 2 5 6 0 13 1] in long format
27 1 2 6 7 0 13 01
28. | 2 7 8 0 13 0|
29. | 2 8 9 0 13 (O]
30. | 2 9 10 0 13 01
31. | 2 10 11 0 13 01
32. | 2 1 12 0 13 o1
33. | 2 12 13 0 13 (O]
34. | 2 13 14 0 13 0]
o +
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Example Motherhood: Effect of Being in Education
. streg educ ineduc east coh2 coh3 coh4 coh5, dist(loglogistic)
Loglogistic regression -- accelerated failure-time form
No. of subjects = 1295 Number of obs = 18289
No. of failures = 955
Time at risk = 18289
LR chi2(7) = 177.50
Log likelihood = -1260.6473 Prob > chi2 = 0.0000
_t ] Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ e
educ | -0479551 -0107518 4.46 0.000 -0268819 -0690284
ineduc | .2709757 -0805059 3.37 0.001 .113187 .4287644
east | -.344305 -0447609 -7.69 0.000 -.4320346 -.2565753
coh2 | -.2974212 -0859041 -3.46 0.001 -.4657902 -.1290522
coh3 | -.5574778 -091732 -6.08 0.000 -.7372691 -.3776864
coh4 | -.5053041 -0843078 -5.99 0.000 -.6705445 -.3400638
coh5 | -.1987835 -0911482 -2.18 0.029 -.3774307 -.0201363
_cons | 2.382483 -1324193 17.99 0.000 2.122946 2.64202
_____________ A e e e e
[1/p] gamma | -4208013 0154379 -3916058 4521734
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Example Motherhood: Effect of Being in Education

* Interpretation of effects of TVCs not always straightforward

— Many authors interpret effects in models specified as above wrongly
(e.g. Blossfeld et al. (2007) page 164) (cf. Bruderl/Diekmann, 1997)

— Produce conditional-effect plot

0.101 10.5 years Blue: Hauptschule + Lehre
18 years Red: University degree
0.08 .
a) Strong negative
o institutional effect while
© 0.06 being in education
; b) Strong negative human
= capital effect of level of
& 0-047 education
c) Both effects add up, so
that a larger proportion of
0.02+ . .
university educated
females is childless at
0.00 age 44 (30+14):
0 5 10 15 20 25 30 S(30) = exp(-H(30))
age - 14
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Episode Splitting Does Not Inflate Significance

» We estimate a Log-Logistic model (without TVC)
— With the original data (LogL_before)
— With the data after “person-period” episode splitting (LogL_after)

Variable | LogL_before LogL_after
_____________ S,
educ | 1.067553 1.067553
| .00873537 .00873537
east | .73450481 .73450481
| .02844572 .02844572 :
coh2 | .75063047 75063047 Thesg are exponentllated
| .05920461 .05920461 coefficients (tlme ratlos).
coh3 | .59340336 .59340336
| .0491596 .0491596 . .
cohd | 62449569 62449569 Obviously nothing changes.
| .04774652 .04774652
coh5 | .81896139 -81896139 Only N is now larger. But Stata
_____________ | 06815068  -06815068 realizes that these are splits and
In_gam I that the number of subjects is still
cons | .38865339 .38865339 1,295.
| .01070309 .01070309
_____________ S
N | 1295 18289
N_sub | 1295 1295
risk | 18289 18289
Il | -1267.7357 -1267.7357
legend: b/se
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Modeling Duration Dependence

» “Person-period” episode splitting and the constant rate model give full
flexibility in modeling duration dependence

The Winners' rate functions

— _tis the time variable (1, 2, ...) 1 Bloss
— Include transforms of _t in a constant rate model | 2
- Gompertz: t )
- Weibull: In(_t) 2 o5
- Quadratic: t, 2 £ ol
- LinearLogistic: _t,In(_t) '
- Blossfeld’s favorite: In(_t), In(tay - _t) ol ‘ ‘ ‘ ‘ ‘ ‘
- Piecewise-constant: dummies for time intervals® ~ ° " _®.*  * ¥
- “Cox™ dummy for each time point
Model |  Obs  II(hull)  TI(model) df AIC BIC
_____________ A e e e e
Gompertz | 17089 -1559.049 -1514.526 8 3045.052  3107.021
Weibull | 17089 -1559.049  -1448.481 8 2912.962  2974.931
Quadratic | 17089 -1559.049 -1192.717 9 2403.434 2473.15
LinLog | 17089 -1559.049 -1167.912 9 2353.825  2423.541
Blossi | 17089 -1559.049 -1167.613 9 2353.226  2422.942
Cox | 17089 -1559.049 -1155.449 31 2372.898 2613.03
PC | 17089 -1559.049  -1238.452 12 2500.905  2593.859
Loglog | 17089 -1290.664 -1205.073 8 2426.145  2488.115
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Discrete-Time Models

* Meanwhile most studies use discrete-time EHA
— No specialized EHA software needed
— Timing is mostly measured imprecise: this makes continuous-time
models problematic
 Discrete timing
— Intrinsically discrete: events can happen only at discrete time points
- E.g., change of parliamentary majority
— Interval censoring: imprecise measurement of event timing
- E.g., only year or month known
» Discrete duration variable T
— t=1, 2, ... denotes time points or time intervals
— Rate function not defined (because limit operation not defined)
— Central modeling concept
- Conditional failure probability: h(t) = P(T=t | T2t)

- Often termed “discrete-time hazard”. But remember: h(t) is only approx.
a rate. The approximation is only good, if intervals are small.
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Estimation
» The survivor function is S(t)=P(T >t =f[( (u))
« Likelihood function
— Failure observation: h(t) -S(t-1) (6=1)
— Censored observation:  S(t) (6=0)

— Assuming independence of observations

L(0) = ﬁ(h(ti; 0)-S(t. -1, 9))5i S(t; 0) =

] lj@](ti; g)ﬁ (1-h(; ‘9))T (H (1-h(j; e)Jﬁ

j=1
— This L is analogous to the L of a binary response model, where h is
P(1), and (1-h) is P(0).
— Thus, if each episode is in person-period long format with appropriate
failure indicator (O if no failure in time period, 1 if failure), one can use
standard binary response modeling.

— Discrete-time models can therefore be estimated without special EHA
software. All you need is: a) episode-splitting, b) binary regression.
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Model Choice

* One has to specify a model for h(t)
* Most popular: logit regression

eC(ti H+B'X;
() = e

— c(t) is a base rate. As with episode splitting, one has the full

flexibility to specify an appropriate model for duration dependence.

- E.g., constant rate (c(t)=0), Weibull (c(t)=(p-1)-In(t)), piecewise-
constant, linear-logistic, Blossi, etc.

— From the formula above it becomes clear that this is no PH-model

- However, if h(t)<0.1 the discrete-time logistic closely reproduces the
underlying continuous-time PH-model (rule of thumb).

- Thus, in this case, the covariate effects are analogously interpretable
as the effects in PH-models (odds-ratios = hazard ratios)

* An alternative: complementary log-log
— This has the advantage that it models a discrete-time PH model
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Discrete-Time Models in Stata

« Data have to be in person-period long format.
 If not: episode splitting
— Either via stset and “person-period” stspl i1t as usual.
_d is the response variable (failure) and _t is the time variable.
— Or completely without st via expand (see example below)

* Model Choice

— Several binary response models are available.
- Usually: logit regression (logit)
- Also available: complementary log-log (cloglog)

Motherhood Example (Linear-Logistic Model in discrete-time):

expand duration //duplicates observations
bysort persnr: gen t = _n //discrete time variable
gend =0 //failure indicator

bysort persnr (t): replace d=1 if child==1 & t==_N //failure in the last split
gen ineduc = t-1 <= (educ+6-14) //the time-varying covariate
gen Int = In(t) //1ogarithm of time

logit d educ ineduc east coh2 coh3 coh4 coh5 t Int //LinLog estimated via Logit
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Motherhood Example: Comparing Continuous- and
Discrete-Time Models (“motherhood3.do”)

. streg educ ineduc east coh2 coh3 coh4 coh5 _t 1nt, dist(exp) //continuous time
Exponential regression -- log relative-hazard form
No. of subjects = 1295 Number of obs = 18289
No. of failures = 955
Time at risk = 18289 }
] R LR chi2(9) = 919.60
Log likelihood = -1164.0594 Prob > chi2 = 0.0000
t | Haz. Ratio Std. Err z P>|z] [95% Conf. Interval]
educ -9525344 -0165281 -2.80 0.005 -9206846 -9854861
ineduc 6577629 -0977118 -2.82 0.005 .4916114 .8800693
east 1.553898 -1025597 6.68 0.000 1.365343 1.768492
coh2 1.390938 -1 2.62 0.009 1.0871 1.779677
coh3 1.864336 .245284 4.73  0.000 1.440571 2.412758
coh4 1.804707 .2213417 4.81 0.000 1.419089 2.295112
coh5 1.037137 -1516104 0.25 0.803 7787642 1.38123
717460 .0157462 -15.13  0.000 .6872526 . 7489957
Int 38.21543  9.319963 14.94 0.000 23.69453 61.63529
logit _d educ ineduc east coh2 coh3 coh4 coh5 _t 1lnt, or //discrete time
Logistic regression Number of obs = 18289
LR chi2(9) = 967.30
i} _ Prob > chi2 = 0.0000
Log likelihood = -3265.4594 Pseudo R2 = 0.1290
_d | Odds Ratio Std. Err. z P>]z] [95% Conf. Interval]
_____________ e e
_ educ .9473544 -0172082 -2.98 0.003 .9142203 .9816893
ineduc .644927 -0986934 -2.87 0.004 -4778053 .8705028
east 1.630034 .113688 7.01 0.000 1.421769 1.868807
coh2 1.436152 -1883853 2.76 0.006 1.110568 1.857187
coh3 1.994245 -2755159 5.00 0.000 1.521179 2.614428
coh4 1.915658 -2455901 5.07 0.000 1.490022 2.46288
coh5 1.047417 -1588943 0.31 0.760 .7780213 1.410093
t .7035951 .016037 -15.42 0.000 .6728548 .7357398
Int 47.56294  12.07217 15.22  0.000 28.92153 78.2197
Note: 4 failures and O successes completely determined.
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Motherhood Example: Comparing Continuous- and
Discrete-Time Models

Comparing continuous and discrete LinLog

0.1507 = Cont. West
= Cont. East
0.1254 = L ogit West
= | ogit East
o 0.100+
©
20.075
£0.050-
0.025+
0.000+

Josef Bruderl, Event History Analysis, May 2012

Conditional-effect plots for both models

Obviously both models yield very similar
results. The base rate estimates (West) are
practically identical. This is due to the fact
that in our application we use essentially the
same timing information in both continuous-
and discrete-time (duration in years).

The covariate effects are not perfectly
identical. This is due to the fact that the
continuous Linear-Logistic is a PH model.
The discrete Logit-Linear-Logistic is not.
However, the approximation is very good.
Thus, the OR-effects on the conditional
failure probability are almost identical to the
hazard-ratio-effects on the failure rate.

Conclusion: It is mainly a matter of taste,
whether you like to use continuous- or
discrete-time models.
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Unobserved Heterogeneity

» As with all regression models there must be no (relevant)
unobserved heterogeneity.
Int; = Bix; + ¢
— The assumption is: Cov(x;, €) =0
- There must be no correlation between covariates and unobservables
— If this assumption is violated, estimates of 3 will be biased
- Spurious correlation

- Unobserved heterogeneity (due to self-selection)
- Omitted variables bias

— The point is that EHA as we have seen it so far is a cross-sectional
method. We compare different people and the unit-homogeneity
assumption must hold:

- People differ only in the treatment (conditional on the controls)

« With rate models there is in addition a second aspect:
— Unobserved heterogeneity might bias estimate of the rate function
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Unobserved Heterogeneity Biases Rate Estimates

« Latent sub-populations
— Two latent groups with r,(t) and r,(t), with proportions p,+p,=1
— The population rate (mixture) is

(- tO_pLO RO _RLOSO, RLOSO o0 SO, o0 S0

S(b) S(t) S(t) S.(t)  S(t) S,(t) S(1) S(b)

— Att=0: weighted (by proportion in pop) mean of group rates

— Later:  weighted (by proportion in risk set) mean of group rates
* Mover-Stayer model

— Stayers: r, = 0 (zero rate) 2> S,(t) =1

— Movers: r, = a (constantrate a) > S,(t) = exp(-a-t)

— Population rate:

—at

e
P+ pe ™

— This is a monotonically declining rate!

I‘(t) =ap,
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Unobserved Heterogeneity Biases Rate Estimates

Mover-Stayer Model, p1=p2=0.5 Mover (Weibull)-Stayer Model, p1=p2=0.5
0.100 0.100-

0.0754 0.0754

mover o
stayer S 0.050
mixture =

mover
stayer
mixture

0.050

rate

0.0254 0.0254

0.000 0.000-]
T T T T T T
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Frailty models

» Generalization: frailty model r(t |v;)=r(t)v;, E(v)=1 Var(v)=60

— r(t) - the underlying rate - is a parametric rate model
— v; is a random variable following (typically) a gamma distribution

— The underlying rate and the gamma frailty distribution together
produce a mixture for the population rate model

— Thus frailty models are even more complicated rate models

» Do frailty models eliminate unobserved heterogeneity?
— Many researchers (and reviewers) believe this!

— But this is nonsense, they are just more complicated rate models.

A frailty model is in AFT notation:
Int, =p.x; +¢ +V,
— Thus frailty models split up the error term in two parts and make
distributional assumptions on both parts. This is quite arbitrarily.

The assumption of no correlation between X and the error terms is

still needed.
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. streg educ east coh2 coh3 coh4 coh5, dist(loglogistic) frailty(gamma)
Loglogistic regression -- accelerated failure-time form

Gamma frailty
No. of subjects = 1295 Number of obs = 1295
No. of failures = 955
Time at risk = 18289
LR chi2(6) = 214.59
Log likelihood =  -1111.4853 Prob > chi2 = 0.0000
_t] Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ e o
educ | .0686915 -0061736 11.13 0.000 .0565915 .0807916
east | -.2927278 .0307127 -9.53 0.000 -.3529236 -.232532
coh2 | -.2034141 -0603482 -3.37 0.001 -.3216944  -.0851339
coh3 | -.407421 -0643492 -6.33 0.000 -.5335431 -.281299
coh4 | -.344628 -0594657 -5.80 0.000 -.4611786  -.2280773
coh5 | -.1289043 -0638687 -2.02 0.044 -.2540847 -.0037239
cons | 1.875274 -0812876 23.07 0.000 1.715953 2.034594
_____________ o o
[1/p] gamma | .2254792 .008441 .2095276 .2426453
theta | .9176164 .078309 .7762828 1.084682
Likelihood-ratio test of theta=0: chibar2(01) = 312.50 Prob>=chibar2 = 0.000
Josef Briderl, Event History Analysis, May 2012 74




Example Motherhood: Frailty Model

lstcurve, hazard unconditional atl(east=0) at2(east=1)

Log-logistic model hazard

Log-logistic/gamma model population hazard

0.1751 Wost 0.175 Wost
0.150- East 0.150- East
0.1251 0.1251
§C) g
© 0.100- S 0.100-
2 2
£ 0.075 = 0.075
QL L
0.050 0.0501
0.025- 0.0251
0.000 0.000
: 5 10 15 20 25 30 o 5 10 15 20 25 30
age - 14 age - 14
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Modeling Duration Dependence

» Frailty models offer a further class of non-PH rate models

« Another non-PH class: modeling the shape parameter
— In Stata via ancillary() option

- - i ic: ﬂ/ ﬂ«t p_l 0 '
E.g., the log-logistic: N0=p (41) . where A=gf* p=e'
1+ (At)°
» Example Motherhood: ancillary(educ east)

Model | Obs 1 (null) 11 (model) df AIC BIC
_____________ o
Blossi | 17089 -1559.049 -1167.613 9 2353.226  2422.942
Loglog | 1295 -1290.664 -1205.073 8 2426.145  2467.475
LogGamma | 1295 -1203.214 -1094.789 9 2207.578 2254.075
LogAncill | 1295 -1287.336 -1191.639 10 2403.279  2454.942

— The gamma frailty model fits best

— Cautionary note: generally, in EHA too much focus is on finding the best
fitting rate model. Experience shows that a bad fitting rate model biases
the regression coefficients not too much.

The much bigger problem is omitted variable bias!!
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Separating Intensity- and Timing-Effects

» Log-logistic/gamma seems very flexible
— However, parameter estimates difficult to mterpret

Generalized Log-Logistic Rate Functions

» Generalized log-logistic also very erX|bIe o i
— Intensity effects: covariates in a P e
— Timing effects:  covariates in A [~ B
p-1 g 10 ] I/ ~ ~—
I’(t) = &a’ Whel‘e /1 — eB'x’ o= ey'z 2 .
1+ (At)P
Yy,

Ap

— However, model not well established
« Time-varying covariates
— Add a time-varying status variable

— See Example above: o
“ineduc” gives the timing-effect

=

b) For Dufferent 3-Values

Source: Briiderl/Diekmann, 1997, | [ 3 | Wi
Education and Marriage o0 I A pm0a
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Motherhood Example: Intensity- and Timing-Effects

West-Germany (non-parametric hazard) East-Germany (non-parametric hazard)
0207 below Abi 0201 below Abi
Abi Abi
0.15 0.15-
© 9
© ©
2 0101 2 0.101
8 g
0.05 0.05 -
0.00 0.00
0 5 10 15 20 25 30 0 5 10 15 20 25 30
age - 14 age - 14

» Educational effects show a compiex pauerr
— They differ between East- and West-Germany

— There is room for more detailed analyses. The generalized log-logistic plus
TVCs is a very flexible model to do this.

— An analysis in this spirit can be found in:

- Bruderl/Diekmann (1997) Education and Marriage. Unpublished manuscript (on
my homepage: >Forschung)
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Competing Risks
» Episode can end with more than one possible failure event

— Multiple destinations (or even multi-state process)
— The possible events “compete” which one comes first.
We observe only the minimum of several potential failure times
— Examples:
- Multiple causes of death
- Marriage can end in divorce or death of partner
- Leaving unemployment:

B vocational training
@ further education
@ education

O other

Percent

O out of labour force
B employed

O unemployed

Source: Marita Jacob
(Westd. Lebensverlaufs-
studie, cohort 64/71)
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Duration of unemployment (in months)




Competing Risks

» The cause-specific approach
— Assumption: risks are independent (conditional on observed covariates)

— Analyze each risk independently (separability property):
The focal risk is treated as failure, all other risks are treated as censoring
events. Standard software can be used.

— Approach not valid if risks are correlated
- No model for correlated risks is available in Stata
« Cumulative incidence curve approach (CIC)
— Cause-specific failure functions sum to >1.

— Use instead: cumulative incidence curves. One has to use special
estimation routines (cf. Cleves et al. (2010) chap. 17).

— Stata offers a special regression algorithm for CICs: stcrreg
» With discrete-time models
— Interval censoring: separability property does not hold!
- Do not use the cause-specific approach! (nevertheless this is done often)
— With intrinsically discrete-time
- The multinomial logistic regression works

- Some (Hill et al., 1993, Soc. Methodology) suggest the multinomial even as a
solution for the case of correlated risks??
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Left Censoring / Left Truncation

» Left censoring

— Persons entering the observation window while being at risk, and it
is unknown how long they have been at risk already

— Left censored observations have to be excluded from the analysis
- Only in case of constant rates there is no problem!
— Use only episodes that started during the observation window!

 Left truncation
— Itis known how long they have been already at risk (delayed entry)

— Treating left truncated episodes as “normal” episodes leads to a
length biased sample. Consequence are biased estimates.

— One has to condition on P(surviving until time of entry t,):

n - S(t
L= H r(ti )5' ﬂ Stata routinely works with this conditioned
i1 S(ty) likelihood. _tO is t,.

Without left truncation _t0=0.

n . . , ,
tj With left truncation _t0 is the duration,
InL = _Zi[éi -In r(ti) - ItOi I’(U) dU] when the individual entered the study.
1=
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Example: Left Truncation

list ID TO T FAIL . stset T, failure(FAIL==1) id(1D) timeO(TO)
Fom . list ID TO T FAIL XT _tO _t _d _st, sepby(ID)
| ID TO T FAIL R e EE LR PP PP PP e +
|- | ID TO T FAIL to _t _d st |
1.1 1 0O 6 1 |- |
|- | 1 0O 6 1 0 6 1 1]
2.1 2 0O 8 1 |- |
|- | 2 0O 8 1 0 8 1 1]
3.1 3 2 4 0 |- |
| | 3 2 4 0 2 4 0 1]
4. | 4 0 3 1 |- |
| | 4 0o 3 1 0 3 1 1]
5.1 5 0o 2 1 |- |
o | 5 0o 2 1 0 2 1 1]
S +
TO : start time
T : end time Note that _t0=2 for observation 3 as it should
FAIL: failure indicator (=1) be. From this one can proceed as usual, i.e.
estimate non-parametric or parametric rate
Note that observation 3 is models, since Stata uses the conditioned
left truncated at time 2 likelihood for all models.
Now the “trick” is to With discrete-time models it is even more simple:
declare TO to be the start use only the time periods after entering the study.

time (time0)

The time periods before are discarded. t has to be
adjusted, however, and must start at the time of entry.
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